DRI OCT Triton

Swept Source Optical Coherence Tomography

SS OCT + Multimodal Fundus Imaging Optimise Your Clinical Workflow

HTOPCON Healthcare

TRITON EVOLVED

Enhance Your Daily Diagnosis

High Density

Swept Source OCT

Optimise Your Practice Workflow by Simplifying and

Speeding Up Data Capture,

Analysis and Follow-Up⁴

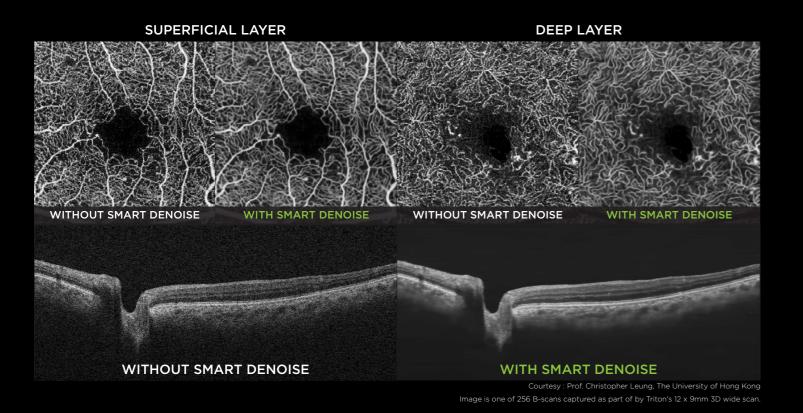
Up to 21mm Wide

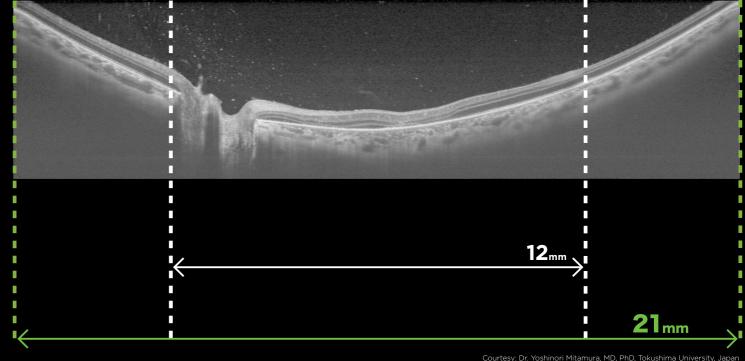
¹Hina Khan, Aamir Asrar, Bisma Ikram, Maha Asrar, Comparison of Image Quality between Swept Source and Spectral Domain OCT in Media Opacification, Pak J Ophthalmol 2016, Vol. 32, No. 3 ²Triton plus only ³Optional ⁴Rachel Hiscox, Clinical applications of optical coherence tomography: what should I know?, Optometry in Practice 2016, Col.17, Issue 2, 59-70

TRITON OVERVIEW

Deep Penetration, Including Through Media Opacities such as Cataracts and Haemorrhages¹

Multimodal Imaging, SS-OCT, Colour, Red-Free, IR, FA², FAF², OCT-A³ and Anterior³





Higher Signal-to-Noise Ratio OCT/OCT-A Images with Smart Denoise

SMART DENOISE FUNCTION

WIDER OCT IMAGING

SMART DENOISE

Smart Denoise is an image processing algorithm which reduces artifacts and increases contrast. High quality OCT and OCT-A images with reduced noise signal are generated from every B-scan within the dense data cubes, through the use of Topcon's unique AI algorithm.

WIDE-FIELD OCT

The optional wide-field attachment lens enables the capture of scans up to 21mm in length. Gather more clinical insights with wide-field OCT and OCTA imaging is valuable in a wide variety of conditions.

Image Processing by Topcon's Unique Al Algorithm

B-scan Smart Denoise for Dense 3D Scans

OCT-A Denoising for Superfical and Deep Slabs

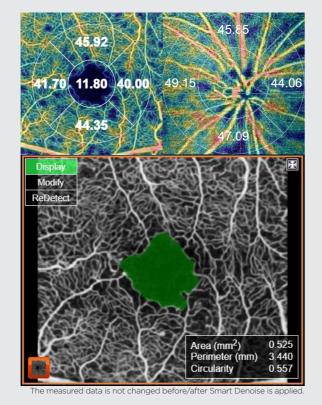
Easy to Capture High Quality Images

0	\ge
6	\bigcirc

Up to 21mm Wide

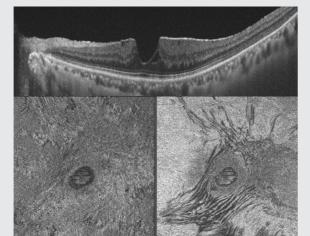
Boosts Multimodal Imaging Capability

Quick and Easy to Attach the Lens

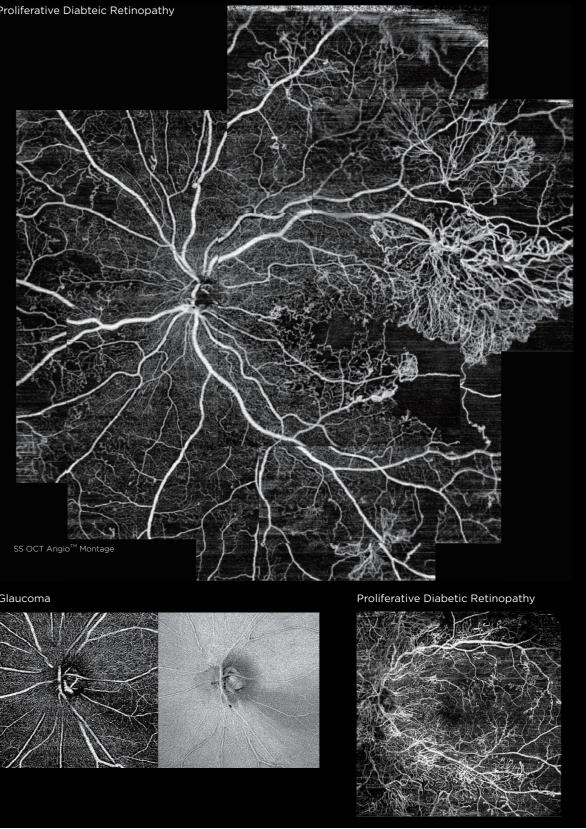

Wide-Field OCTA 21×21mm Wide

OCT Angiography with Swept Source OCT

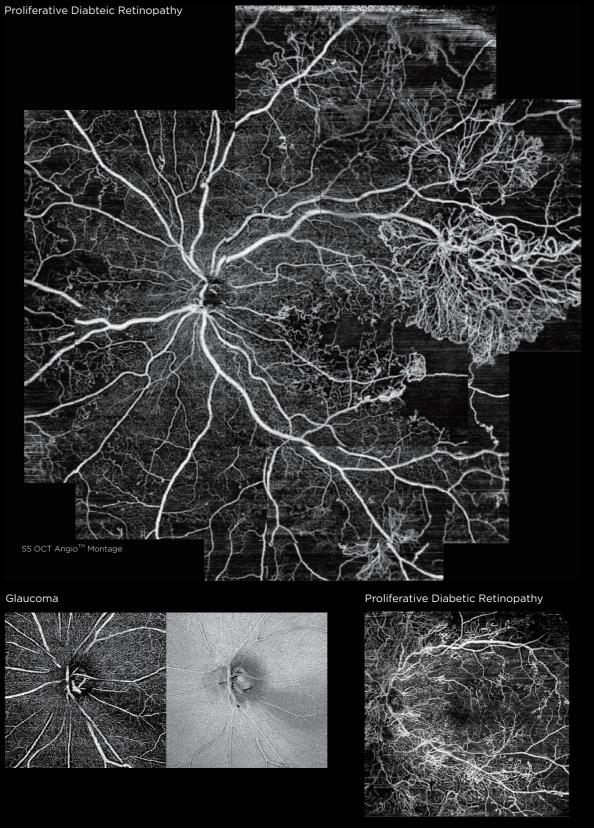
TOPCON's SS OCT Angio[™] combines OCT Angiography with Swept Source OCT technology and a long 1050nm wavelength. OCTARATM, a proprietary image processing algorithm, provides highly sensitive angiographic detection⁵, allowing for visualisation of vascular structures.


OCTA Metrics

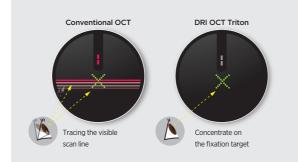
Triton's SS OCT Angio displays OCTA density, the ratio between high and low signal areas, The information is displayed as a colour map with the ability to display values, for rapid comprehension.



En Face OCT Imaging


En face imaging allows for independent dissection and examination of key layers, such as the vitreoretinal interface (ILM boundary), retinal pigment epithelium and choroidal layers.

Courtesy: Y. Morizane, MD,PhD, Okayama University, Japa


Courtesy: Akihiro Ishibazawa, MD, PhD. Asahikawa Medical University Graduate School of Medical Sciences, Hokkaido, Japan

Swept Source OCT Technology; Scanning Speed of 100,000 A-scans/sec

A fast scanning speed of 100,000 A-scans/sec enables capture of a dense array of clear B-scans⁶ by acquiring more A-scans within a given image acquisition time. This helps to reduce artifacts from involuntary eye movements such as saccades and blinks.

Invisible Scan Lines

The invisible 1,050nm wavelength light helps patients concentrate on the fixation target during the scan, reducing involuntary eye movement. It supports more efficient workflow in a practice by reducing the need to rescan.

EVV (Enhanced Vitreous Visualization[™])


EVV helps clinicians assess vitreous and vitreoretinal interface abnormalities⁸. Contrast can be quickly adjusted to the needs of the physician, depending on the area of greatest interest.

Triton's Dynamic Focus[™]

Triton's Dynamic Focus[™] allows for acquisition of images with near uniform focus and image quality throughout the entire depth of the image, for example vitreous, retina and choroid.

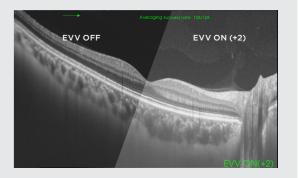
Multimodal Imaging

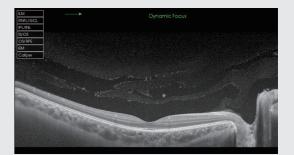
The DRI OCT Triton offers a true colour⁷, non-mydriatic fundus image. Fluorescein Angiography (FA) and Fundus Autofluorescence (FAF) are available to enhance the diagnostic capability of Triton plus^{*}. The all-in-one device supports efficient workflow in practice. DRI OCT Triton can acquire the OCT and fundus image in a single capture. PinPoint[™] registration identifies the location of the B-scan on the fundus image. Comparison between the B-scan and fundus image can support efficient clinical diagnosis.

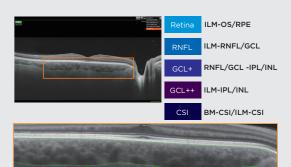
Colour Image Sensor : 5MP FA Image Sensor : 4MP FAF Image Sensor : 4MP

⁶ Shoji Kishi. Impact of swept source optical coherence tomography on ophthalmology. Taiwan Journal of Ophthalmology 6 (2016) 58-68 ⁷ Colour fundus image with white light, with 24-bit colour. *Product name is DRI OCT Triton (plus)

5 layer thickness map function/ Choroidal Thickness Map


Retinal tissue layers are automatically segmented by the Topcon Advanced Boundary Software (TABSTM), enabling quantification of retinal thickness and sub layers⁹¹⁰. Triton provides clear visualisation of the choroid, and generates choroidal thickness maps to visualize choroidal structure and response to treatments.


Fundus Guided Acquisition (FGA)


OCT scan location can be easily set by selecting the area of interest on the fundus image. With FGA, the operator can choose to capture or import a fundus image, select the scan location and automatically acquire a B-scan or array of B-scans at that location.

⁸ Fabio Lavinsky, Daniel Lavinsky. Novel perspectives on swept-source optical coherence tomography. Int J Retin Vitr (2016) 2:25
⁹ Zhichao Wu, Denis S. D. Weng, Rashmi Rajshekhar, Abinaya Thenappan, Robert Ritch, Donald C. Hood. Evaluation of a Qualitative Approach for Detecting Glaucomatous Progression Using Wide-Field Optical Coherence Tomography Scans. Trans Vis Sci Tech. 2018;7(3):5.
¹⁰ Beatriz Abadia, Ines Suñen, Pilar Calvo, Francisco Bartol, Guayente Verdes, Antonio Ferreras. Choroidal thickness measured using swept-source optical coherence tomography is reduced in patients with type 2 diabetes. PLoS ONE 13(2): e0191977.

MULTIMODAL IMAGING

WORKFLOW ENHANCEMENT

Motion Correction Compensation/ Rescanning Function

Motion Correction

Corrects the Z direction movement **Compensation**

Tracks the eye and then compensates for the X direction movement.

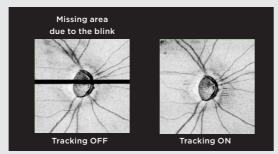
Rescanning Function

The rescanning function is available to minimise data loss due to blinking and Y direction eye movement during 3D OCT and 3D OCT Angiography scans.

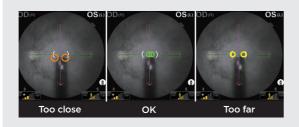
SMARTTrack[™]

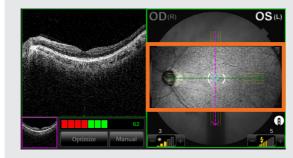
SMARTTrack[™] system enables to capture image of designated location by automated tracking of the eye. For the 3D OCT scan and OCT Angiography scan, rescan is performed when there is a data loss due to blink.

Projection Image

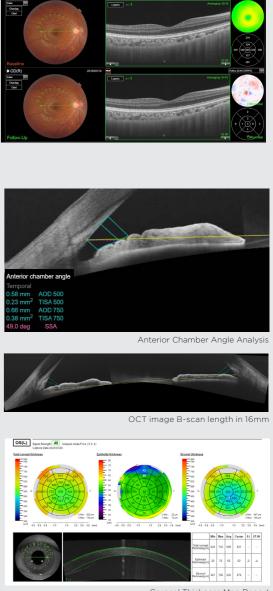

The projection image provides an easy means of confirming scan locations when the OCT image capture is not accompanied by a colour fundus image.

Alignment Navigation


Triton's alignment navigation guides simplify operation of the device and direct the operator to achieve optimal device positioning, reducing acquisition errors and supporting rapid capture.


Live Fundus View

The fast scanning speed allows the Triton to create a live En Face fundus image, an ideal tool for precisely visualizing the scan position. This enables the operator to be sure they are capturing the correct area, even in patients with small pupils.


Follow-Up Function

This function allows you to retrieve and re-analyze the same location with follow-up scans, for seamless comparison of past and current scan data. Operators only need to select past data and Triton automatically captures the same area.

Anterior Segment Imaging

Triton's optional anterior segment imaging capabilities allow for visualisation of the cornea, anterior chamber angle, iris and anterior sclera. The anterior segment lens attachment is combined with quantitative analysis. The new anterior segment feature reaffirms Triton's value in comprehensive eye care settings.

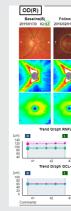
DIAGNOSTIC CAPABILITIES

Corneal Thickness Map Report

INFORMATIVE REPORTS

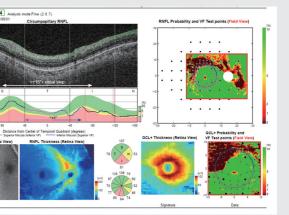
Seamlessly analyse data acquired with SS OCT using in the context of Triton's reference database. The DRI OCT Triton offers a range of comprehensive reports which consolidate essential diagnostic information into a single page and use colour-coding for easy visual identification of abnormalities against the reference database. These features support diagnosis and treatment planning for conditions including macular diseases and glaucoma.

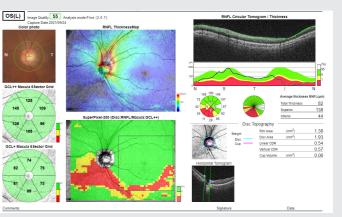
Hood Report

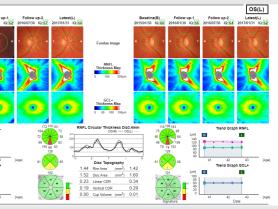

The Hood Report provides Retinal Thickness/ RNFL/ GCL and Circumpapillary Metrics in one scan. This report streamlines the decision-making process through the correlation of structural probability maps (GCC/RNFL) with function (overlay of visual field test locations)¹¹.

3D Wide Glaucoma Report

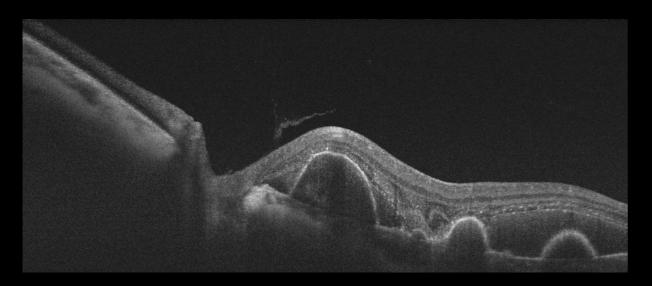
The 12x9mm wide-field scan covers the optic nerve and macula and can be captured in one acquisiton to provide a comprehensive assessment of the posterior pole with reference database comparison.

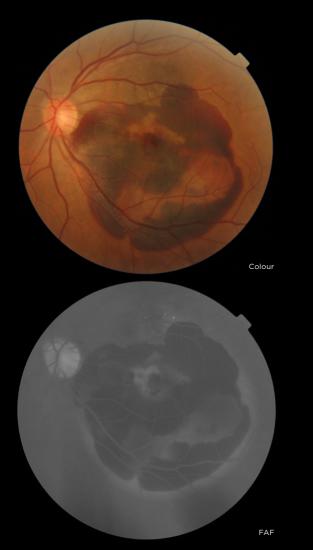

Trend Analysis Report


These reports show the change in thickness measurements over time. The layer displayed (RNFL/GCL+/ GCL++) can be selected as required depending on the area scanned. Poor scans can be excluded and new baselines added when management changes.

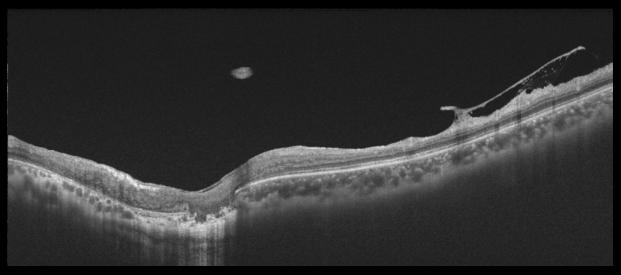


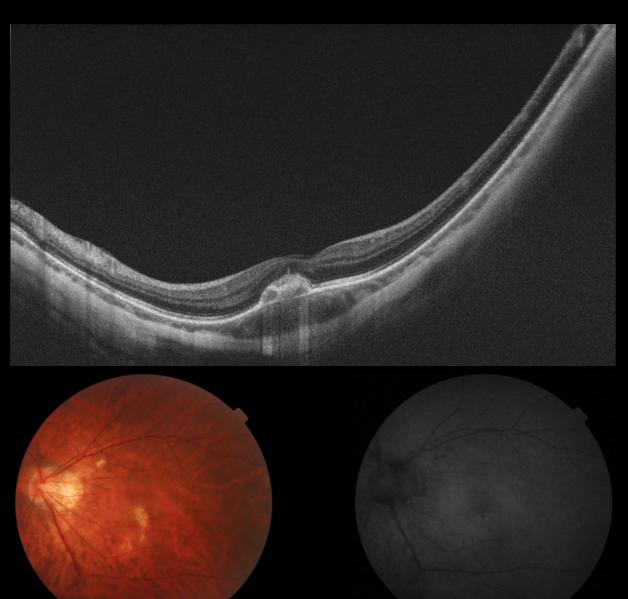
¹¹ Zhichao Wu, Denis S. D. Weng, Rashmi Rajshekhar, Abinaya Thenappan, Robert Ritch, Donald C. Hood. Evaluation of a Qualitative Approach for Detecting Glaucomatous Progression Using Wide-Field Optical Coherence Tomography Scans. Trans Vis Sci Tech. 2018;7(3):5.

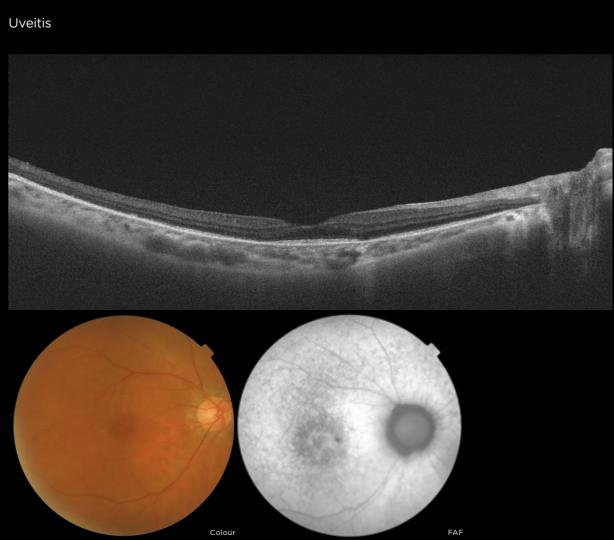

INFORMATIVE REPORTS



Polypoidal Choroidal Vasculopathy

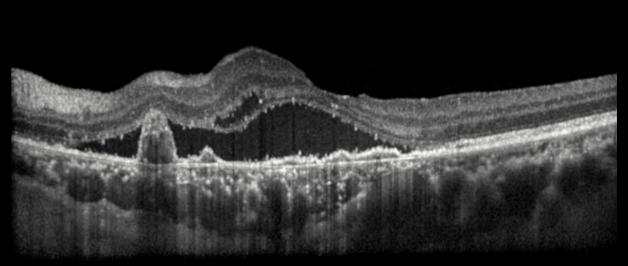



Epiretinal Membrane


Courtesy: XZ,Zhang,Zhongshan Ophthalmic Centre, Sun Yat-Sen University

CLINICAL IMAGES

Punctate Inner Choroidopathy



Courtesy: Prof. Wen, Zhongshan Ophthalmic Centre, Sun Yat-Sen University

Courtesy: Prof. Min Wang, Eye, Ear, Nose and Throat Hospital, Fudan University

AMD

Courtesy: Dr. Kelvin Teo, MBBS, PhD, Associate Professor, Duke NUS Ophthalmology ACP Senior Consultant, Medical Retina Department, Singapore National Eye Centre

CLINICAL IMAGES

SPECIFICATIONS

Observation & Photography of Fundu						
Photography type	Colour, FA ^(Note) , FAF ^(Note) , Red-free ^(Note2) , IR					
Picture angle	45°±5%					
	Equivalent to 30° (Digital zoom) Normal: ф 4.0mm					
Photographable diameter of pupil	Small pupil diameter: \$3.3mm					
Fundus image resolution (on fundus)	Center: 60 lines/mm					
[Optical resolution]	Middle(r/2): 40 lines/mm Periphery(r): 25 lines/mm					
Observation & Photography of Fundu						
Scan range (on fundus)	Horizontal 3 to 12mm±5%, Vertical 3 to 12mm±5%					
Scan pattern	3D scan, Linear scan (Line-scan/Cross-scan/Radial-scan)					
Scan speed	100,000 A-Scans per second					
Lateral resolution	20µm					
	Optical resolution: 8µm					
In-depth resolution	Digital resolution: 2.6µm±3%					
	(When taking two or more pictures)					
Photographable diameter of pupil	φ2.5mm					
Observation & Photography of Fundus I						
Operating distance	34.8mm±0.1mm					
	Internal fixation target Dot-matrix type organic ELD display					
	The display position can be changed and adjusted.					
	The displaying method can be changed.					
Fixation target	Peripheral fixation target					
	This is displayed according to the internal fixation target					
	displayed position. External fixation target					
	Without the diopter compensation lens -13D to +12D					
Measurable range of dioptric power	When the concave compensation lens is used -12D to -33D					
for the patient's eye	When the convex compensation lens is used +11D to +40D					
Observation & photography of Wide fie	Id Fundus Tomogram ^(Note3)					
Operating distance	10.5mm±0.5mm					
Scan range (on fundus)	Horizontal 21mm±10%, Vertical 21mm±10%					
Scan pattern	3D scan, Linear scan (Line-scan/Cross-scan/Radial-scan)					
Scan speed	100,000 A-Scans per second					
Lateral resolution	30µm					
In-depth resolution	Optical resolution: 8µm					
	Internal fixation target					
	Dot-matrix type organic ELD display					
	The display position can be changed and adjusted.					
Fixation target	The displaying method can be changed.					
	Peripheral fixation target This is displayed according to the internal fixation target					
	displayed position.					
	External fixation target					
Measurable range of dioptric power	Without the diopter compensation lens -7D to +40D					
for the patient's eye	When the concave compensation lens is used -33D to -5D					
Observation & Photography of Anterior						
Photography type						
Observation & Photography of Anterior						
Scan range (on cornea)	Horizontal 3 to 16mm±5%, Vertical 3 to 16mm±5%					
Scan pattern	3D scan / Line scan (Line-scan/Radial-scan)					
Scan speed	100,000 A-scans per second					
Observation & Photography of Anterior	Segment Image/Anterior Segment Tomogram ^(Note4)					
Operating distance	17±0.3mm					
	Internal fixation target					
	LED target					
Fixation target						
-	External fixation target					
Electric Rating						
-	AC 100-240V					
Electric Rating						
Electric Rating Source voltage	AC 100-240V					
Electric Rating Source voltage Power input	AC 100-240V 250VA					
Electric Rating Source voltage Power input Frequency	AC 100-240V 250VA					
Electric Rating Source voltage Power input Frequency Dimensions & Weight	AC 100-240V 250VA 50Hz-60Hz					

Note1: FA photography and FAF photography can be performed only with the DRI OCT Triton (plus). Note2: Digital red free image processing of colour images to display them as pseudo Red-free images. Note3: Observation & Photography of Wide field Fundus Tomogram are available only when using Wide field OCT attachment lens WA-1. Note4: Observation & Photography of Anterior Segment Image and Tomogram are available only when using ANTERIOR SEGMENT ATTACHMENT KIT AA-1.

Triton plus O O O O O O O O O O O O O O O O O O O	Triton				En Face	Red-Free	Anterior*	OCT-A*	WF OCT*
				-	0	0	0	0	0
	Triton plus	0	0	0	0	0	0	0	0
									*Option
	0								(

INPORTANT In order to obtain the best results with this instrument, please be sure to review all user instructions prior to operation. Not all products, services, or offers are available in all markets. Contact your local distributor for country-specific information and availability

TOPCON INSTRUMENTS (MALAYSIA) SDN. BHD.

(Regional Office for Topcon Healthcare Southeast Asia) Unit 2, 4, Jalan Pensyarah U1/28,Hicom-glenmarie Industrial Park, 40150 Shah Alam, Selangor, MALAYSIA Phone: +603-76616260 Fax: +603-76616261 Email: mys_tim_marketing_sm@topcon.com www.topconhealthcare.my

TOPCON SINGAPORE MEDICAL PTE. LTD.

100G Pasir Panjang Road, #02-18, Interlocal Centre, SINGAPORE 118523 Phone: +65-68720606 Fax:+65-67736150 E-mail: med.sales.sg@topcon.com www.topconhealthcare.sg

TOPCON INSTRUMENTS (THAILAND) CO., LTD. 77/162 Sinnsathorn Tower, 37th Floor, Krungthonburi Rd., Klongtonsai, Klongsarn, Bangkok 10600, THAILAND Phone: +66-02-440-1152 Fax: +66-02-440-1158 Email: tha_medical@topcon.com www.eyecare.topcon.co.th

MEHRA EYETECH PRIVATE LIMITED

SOI B Wing, Lotus Corporate Park, Graham Firth Steel Compound Goregaon (East). Mumbai 400063 Maharashtra, INDIA Phone: +91-22-61285455 E-mail: sales@mehraeyetech.in www.topconhealthcare.in

TOPCON (BEIJING) MEDICAL TECHNOLOGY CO., LTD.

Room 2808, Tower C, JinChangAn Building, No.82, Middle Section East 4th Ring Road, Chaoyang District, Beijing 100124, P.R. CHINA Phone: +86-10-8794-5176 E-mail: cn_marketing@topcon.com www.topcon-china.net/ TOPCON KOREA MEDICAL CO., LTD.

2F YK Building, 205, Dogok-ro, Gangnam-gu, Seoul, Republic of Korea Phone :+82-2-6959-7947 E-mail:tkm@topcon.com www.topconhealthcare.kr/

TOPCON CORPORATION

75-1 Hasunuma-cho, Itabashi-ku, Tokyo 174-8580, JAPAN. Phone: +81-(0)3-3558-2522/2502 Fax: +81-(0)3-3965-6898 www.topconhealthcare.jp

CLASS 1LASER PRODUCT (IEC60825-1:2014) PRODUIT LASER DE CLASSE 1 (CEI60825-1:2014)

n of